организовать мероприятие в Cколтехе
оставить заявку
Учёные из Сколтеха и МФТИ при помощи машинного обучения заметно ускорили поиск кандидатов металлических сплавов, из которых экспериментаторы отбирают материалы для ракетостроения и других высокотехнологичных отраслей. Сейчас устойчивые сплавы ищут методами, которые сопряжены с риском упустить перспективный материал либо требуют запредельно долгих вычислений. Новый же метод, представленный в журнале npj Computational Materials, использует машинное обучение, чтобы ускорить перебор вариантов и сделать его более исчерпывающим. Исследование поддержано грантом РНФ.
Чистые металлы обычно уступают по своим свойствам сплавам из нескольких металлов и других элементов вроде углерода или кремния. Меняя состав и соотношение элементов в сплаве, можно регулировать его характеристики: прочность, ковкость, температуру плавления, устойчивость к коррозии, электрическое сопротивление и многие другие. Так материаловеды ищут сплавы с более совершенными свойствами для авиации, космических технологий, машиностроения и других областей: электротехники, строительства, медицинских инструментов и проч.
Однако новый сплав попадает в инструментарий инженера-проектировщика лишь тогда, когда его свойства измерены в ходе эксперимента. Проблема в том, что экспериментальный синтез и проверка материалов-кандидатов в лаборатории — это долгий и дорогостоящий процесс. Более того, даже моделирование сплавов на компьютере требует огромных затрат времени и ресурсов и потому не позволяет перебрать много вариантов.
«Потенциальных кандидатов очень много, потому что много переменных: какие химические элементы в составе сплава, в каких соотношениях, какая кристаллическая решётка и так далее, — рассказал один из авторов статьи, заведующий Лабораторией методов искусственного интеллекта для разработки материалов Центра ИИ Сколтеха Александр Шапеев. — Скажем, в простейшей системе двух элементов, ниобия и вольфрама, если рассмотреть набор из 20 атомов в ячейке кристаллической решётки, вам уже придётся моделировать более миллиона различных комбинаций, 2 в степени 20, без учёта симметрии».
Используемые для моделирования и отбора перспективных сплавов эволюционные алгоритмы, графовые нейросети, метод роя частиц и другие подходы хорошо работают при точечном поиске кандидатов, без перебора всех возможных комбинаций. Но в этом случае появляется риск упустить материал с выдающимися характеристиками.
«Эти подходы опираются на фундаментальное физическое описание процесса, прямые квантово-механические расчёты, — пояснила магистрант программы „Науки о данных“ Сколтеха и выпускница МФТИ Виктория Зинькович, первый автор научного исследования. — Это очень точные, но сложные и долгие расчёты. Мы же используем машинно-обучаемые потенциалы, которые, напротив, отличаются высокой скоростью вычислений и позволяют перебрать все возможные комбинации до некоторой границы отсечения, например до 20 атомов в суперъячейке. А значит, мы не пропустим хороших кандидатов».
Подход прошёл валидацию на двух системах. Во-первых, тугоплавкие металлы: ванадий, молибден, ниобий, тантал, вольфрам. Во-вторых, медь и благородные металлы: золото, серебро, платина, палладий. В каждой системе рассмотрели по три сочетания атомов. Например, сразу все металлы из второго перечня; или медь, палладий и платина; или только медь и платина. Пять элементов в составе каждого перечня подобраны так, что для них характерна одна и та же кристаллическая решётка. Это упрощает расчёты, поскольку заранее известно, что и у сплава будет та же решётка.
Исследователи применили свой алгоритм поиска к каждому из шести рассмотренных сочетаний атомов — по три сочетания на благородные и на тугоплавкие металлы. Алгоритм ориентирован на оптимизацию физических величин, называемых энергией и энтальпией образования вещества, которые указывают на то, какие сплавы устойчивы, а какие подвержены распаду, то есть самопроизвольному переходу в иную, более стабильную конфигурацию.
О результативности алгоритма можно судить, сравнив результаты поиска с наполнением стандартной базы сплавов, которой пользуются материаловеды в отрасли. Авторы исследования обнаружили 268 новых сплавов, устойчивых при нулевой температуре, которых в базе не было. Так, в системе «ниобий — молибден — вольфрам» подход на основе машинно-обучаемых потенциалов выдал 12 кандидатов, при этом в базе не фигурирует ни одного трёхкомпонентного сплава с таким составом.
Теперь свойства новых сплавов можно уточнять и проверять более прицельным моделированием и экспериментами, чтобы установить, какие из этих материалов перспективны для практических применений. «Использование компьютерного моделирования в науке о материалах уже послужило началом для открытия множества новых промышленно значимых сплавов, имеющих спектр применений от деталей кузовов автомобилей до баков для хранения водорода в ракетном топливе», — добавила Зинькович. Тем временем сами авторы нового алгоритма, по словам учёной, планируют применить свой подход к сплавам с другими составами и кристаллическими решётками.