организовать мероприятие в Cколтехе
оставить заявку
Исследователи Сколтеха совместно с коллегами из академических институтов и отрасли разгадали загадку 1960-х годов о кристаллической структуре потенциально сверхтвердого борида вольфрама, который может оказаться крайне полезным в самых разных областях применения, включая технологии бурения. Статья о научной работе, поддержанной Научно-техническим центром «Газпром нефти», опубликована в журнале Advanced Science.
Бориды вольфрама впервые привлекли внимание ученых в середине XX века благодаря своей твердости и другим интересным механическим свойствам. Одна из давних загадок, связанных с этими соединениями, — кристаллическая структура так называемого соединения “WB4”, высшего борида вольфрама, которая сильно различается в экспериментальных моделях и теоретических предсказаниях разных групп.
«Экспериментально кристаллическая структура определяется рентгеноструктурным анализом. Но большая разница в атомных эффективных сечениях рассеяния (тяжелый вольфрам по сравнению с легким бором) делает позиции атомов бора в переходных боридах металлов едва различимыми для такого анализа. Эту проблему можно решить дифракцией нейтронов, и это было сделано недавно, но любой дифракционный метод может дать лишь усредненную структуру. Если материал неупорядоченный, полного понимания его кристаллической структуры, включая локальное расположение атомов, можно добиться только с помощью сочетания экспериментальных и вычислительных методов», — сказал старший научный сотрудник Сколтеха и первый автор статьи Александр Квашнин.
В 2017 году сотрудники Сколтеха Андрей Осипцов и Артем Оганов предложили идею поиска новых сверхтвердых материалов для композитных резцов долота, используемого для бурения нефтегазовых скважин. Эта идея понравилась Научно-техническому центру «Газпром нефти» — так началось её сотрудничество со Сколтехом. Группа под руководством Оганова предсказала существование пентаборида вольфрама WB5, который по твердости превосходил широко используемый карбид вольфрама, а по устойчивости к образованию трещин был с ним сопоставим. Соединение в итоге успешно синтезировали в Институте физики высоких давлений имени Верещагина.
В новом исследовании Оганов и его коллеги показывают, что тот самый загадочный “WB4” и новый пентаборид вольфрама WB5 — на самом деле один и тот же материал.
«Мы изучали систему вольфрам-бор, чтобы предсказать существование стабильной структуры высших боридов вольфрама, так как знали об этой давней загадке. Предсказание структуры WB5 стало для нас сюрпризом, особенно из-за его удивительных свойств вроде твердости по Виккерсу и трещинностойкости, а также стабильности при очень высоких температурах. Мы решили, что этот материал должен найти применение в промышленности, и наши коллеги из института имени Верещагина синтезировали его. Дифракционная картина очень хорошо соответствовала теоретическим предсказаниям за исключением нескольких слабых пиков, которые были в теории, но не в эксперименте. У нашего предсказанного WB5 идеальная монокристаллическая структура, но, как нам удалось показать, в экспериментах мы получили очень близкий к нему неупорядоченный WB5-x», — пояснил Квашнин.
Ученые синтезировали новый материал, изучили его свойства и обнаружили неожиданную связь двух соединений: кристаллическая структура этого высшего борида вольфрама похожа на структуру WB5 с некоторой неупорядоченностью и нестехиометрией (последнее означает, что пропорции химических элементов в его составе нельзя представить малыми целыми числами). Поэтому новое соединение обозначили не как WB4, а как WB5−x. Его кристаллическую структуру предсказали с помощью эволюционного алгоритма USPEX, разработанного Огановым и его студентами, и развили с помощью микроскопической решеточной модели.
Поскольку WB5-x достаточно легко синтезировать, его превосходные механические свойства и стабильность при высоких температурах делают его перспективной альтернативой композитам на основе карбида вольфрама, которые чаще всего использовались во многих технологиях последние 90 лет.
«Загадка “WB4” разгадана полностью: у нас есть детальное описание этого материала и его структуры, мы знаем весь диапазон химических составов, который он может иметь, и его свойства. Впереди у теоретиков другие интересные загадки», — заключил Артем Оганов.
В исследовании также принимали участие специалисты Института общей физики имени А.М. Прохорова РАН и Института физики высоких давлений имени Л. Ф. Верещагина РАН.