Исследователи установили, что мобильные генетические элементы могут непреднамеренно подавлять иммунитет бактерий

Системы рестрикции-модификации у бактерий отвечают за защиту клетки от чужеродного генетического материала, например, бактериофагов и плазмид. Иммунные системы требуют строгой регуляции, поскольку у бактерий, как и у человека, возможны аутоиммунные реакции — атака на собственную ДНК. Группа учёных во главе с руководителем Лаборатории анализа метагеномов в Сколтехе Артёмом Исаевым изучила одну из первых открытых систем иммунитета у бактерий EcoKI и установила, что наличие в клетке плазмидной ДНК приводит к активации аллевиации рестрикции — встроенной программы подавления иммунитета. Этот эффект был назван плазмидо-индуцированной аллевиацией рестрикции. Он возникает, когда в клетку попадают плазмиды, обладающие особыми свойствами, которые начинают конфликтовать с внутриклеточным иммунитетом. Результаты работы представлены в журнале Nucleic Acids Research.

subscription
Изображение 1. Графическая аннотация исследования. Источник: RecA-dependent or independent recombination of plasmid DNA generates a conflict with the host EcoKI immunity by launching restriction alleviation.

Плазмиды — это форма мобильных генетических элементов, кольцевые молекулы ДНК, которыми бактерии активно обмениваются друг с другом, что приводит к их быстрому распространению по популяции. 

«Открытие оказалось для нас совершенно неожиданным. Мы изучали белок, который должен был ингибировать систему EcoKI, но данные никак не сходились. Тогда мы подумали: а не может ли оказаться, что сама плазмидная ДНК подавляет бактериальный иммунитет? Оказалось, что наличие плазмиды, которая обладает специальными элементами, сайтами для распознавания нуклеазы EcoKI системы, привлекало EcoKI нуклеазу на плазмидную ДНК, что запускало программу деградации этого белка. В норме эта программа нужна, чтобы защитить клетку от случайной атаки нуклеазы на бактериальную хромосому, но оказалась, что плазмидная ДНК настолько активно привлекает на себя EcoKI нуклеазу, что это полностью отключает бактериальный иммунитет. Для самой плазмиды это тоже плохо, так как клетка становится чувствительна к заражению фагами, поэтому мы считаем, что подобный конфликт возникает непреднамеренно и просто отражает сложность различных биологических механизмов, которые не всегда друг с другом согласованы», — рассказал руководитель работы Артём Исаев.

subscription
Изображение 2. Тёмные бляшки — зоны лизиса фага, который способен заражать клетки даже в восьмом разведении (первая линия). В клетках с системой защиты иммунитет бактерии угнетён, поэтому фаг способен заражать клетки в большем разведении (третья линия).

Результаты учёных также внесли вклад в понимание процессов внутриклеточной рекомбинации — процесса, в котором одна молекула ДНК может обмениваться фрагментами со своей копией внутри клетки. Когда в бактериальном геноме происходит разрыв в ДНК, то, чтобы его устранить, клетка использует генетическую рекомбинацию, с помощью которой она находит похожую цепь ДНК. Этот процесс также требует наличия специальной последовательности, называемой Chi-сайтом. Если же этот сайт удалить, то двухцепочечный разрыв может привести к полной деградации поврежденной ДНК плазмиды. 

«Мы установили, что для запуска аллевиации рестрикции плазмиде необходим Chi-сайт, то есть способность к активной рекомбинации. Однако в особых условиях, если удалить компоненты клетки, отвечающие за основные процессы рекомбинации (белки RecBCD и RecA), мы можем по-прежнему наблюдать аллевиацию рестрикции. Это говорит о том, что в бактериальной клетке есть скрытые или альтернативные способы рекомбинации, которые не проявляют себя в присутствии RecBCD и RecA. Теперь наша модельная система поможет исследовать эти пути», — рассказали первые авторы работы, аспиранты Сколтеха по программе «Науки о жизни» Михаил Скутель и Дарья Яновская.  

Исследование поддержано грантами РНФ № 22-14-00004 «Поиск и характеристика новых систем бактериального иммунитета и вирусных анти-рестрикционных белков» и № 24-14-00181 «Выявление эко-географических факторов, определяющих функциональный состав и структуру природных микробных сообществ», а также грантом Министерства науки и высшего образования Российской Федерации № 075-10-2021-114 «Атлас микробных сообществ Российской Федерации».