Коллектив учёных из Сколтеха и других организаций предложил новый быстрый способ распознавания товаров на развес в магазине. В отличие от существующих систем, новая разработка ускорит обучение нейронной сети, когда в магазин привезут новые виды товаров. Исследование опубликовано в журнале IEEE Access.
В магазинах продолжают внедрять технологии, которые помогают упростить работу персонала и ускорить процесс взвешивания товаров и их оплаты. В одних магазинах покупатели, запомнив код, сами взвешивают товар на весах в зале, а в других это делают кассиры, которые определяют сорт овощей или фруктов на вид или спрашивают об этом самого покупателя. На кассах самообслуживания со встроенными весами покупателю также нужно запоминать все коды, а проконтролировать, правильно ли покупатель взвешивает товар, сложно. Исследователи из Сколтеха предлагают упростить этот процесс с помощью системы компьютерного зрения.
По словам учёных, у существующих инструментов есть ряд недостатков: «Сложность в том, что в магазинах много визуально похожих сортов фруктов или овощей, часто появляются новые. Классические системы компьютерного зрения нужно переобучать каждый раз, когда появляется новый сорт. Это долго, поскольку нужно собирать много данных о нём, потом вручную размечать их», — объясняет первый автор работы, инженер-программист и аспирант Центра технологий искусственного интеллекта в Сколтехе Сергей Нестерук.
Разработанный подход PseudoAugment позволяет настраивать нейронную сеть для работы с новыми классами без длительного процесса сбора и разметки данных. Систему можно настроить даже до того, как новые сорта окажутся на полке магазина.