Сделан шаг к созданию «эндоскопа-стробоскопа» для анализа бляшек в сосудах
02 февраля 2021

Учёные из Сколтеха и их коллеги приблизились к созданию оптоакустического эндоскопа — медицинского зонда, который сможет пролезть внутрь кровеносного сосуда и исследовать атеросклеротические бляшки быстро мигающим лазером. Выбирая длину волны света такого диагностического «стробоскопа», можно заставлять вибрировать клетки разных видов и таким образом считывать состав бляшки при помощи ультразвукового микрофона. Исследование опубликовано в журнале ACS Photonics.

subscription
Сосудистая дискотека, художественная интерпретация разрабатываемой авторами исследования технологии. Оптоакустический зонд проникает в кровеносный сосуд, клетки облучаются мигающим лазером на разных длинах волн, после чего они уже не могут стоять смирно.

Оптоакустическая визуализация — перспективная технология медицинской диагностики, которая может стать стандартной процедурой профилактического обследования на рак молочной железы, а при условии миниатюризации оборудования — применяться для обнаружения и анализа поражений мозга и атеросклеротических бляшек. В отличие от компьютерной томографии в оптоакустике используется не рентгеновское излучение, а обычный свет и звуковые сигналы, отсюда название: оптика плюс акустика.

Принцип работы таков: исследуемая ткань облучается импульсами лазера на длине волны, на которой поглощает свет некоторое значимое вещество, оно же «биомаркер», — им может быть гемоглобин, коллаген или даже вода. Поглощая свет, вещество нагревается и расширяется, но в интервалах между вспышками «стробоскопа» успевает обратно сжаться. Периодическое расширение вызывает механическое колебание, как в мембране сабвуфера, только не на низких, а на очень высоких частотах — именно этот ультразвук выдаёт присутствие и местоположение искомых молекул. Он регистрируется чувствительным микрофоном.

Оптоакустика не только спасает пациентов от дозы ионизирующего излучения, но вдобавок позволяет выборочно визуализировать конкретные биомаркеры: меняя длину волны возбуждающего ультразвук лазера, можно «настроиться» на разные молекулы. Кроме того, ультразвук затухает в биологических тканях меньше, чем свет, поэтому можно заглянуть в организм глубже.

«В этом году FDA [Управление по санитарному надзору за качеством пищевых продуктов и медикаментов США] одобрило оптоакустическую диагностическую систему для скрининга рака молочной железы. Только одобренный аппарат не предназначен для введения в тело. Он оснащён довольно громоздким лазером и микрофоном», — поясняет руководитель исследования, профессор Дмитрий Горин из Сколтеха.

«Но бывают случаи, когда свет не может проникнуть достаточно глубоко. Тогда можно ввести в тело зонд, чтобы, например, рассмотреть изнутри стенки сосудов или органов. Это могло бы пригодиться для работы с атеросклеротическими бляшками: их анализа или даже микрохирургии. Такой зонд должен быть очень тонким и желательно без проводов», — добавляет учёный.

Над развитием как раз такой технологии, ранее предложенной британскими коллегами, работают авторы недавно опубликованного в ACS Photonics исследования. Их зонд представляет собой оптоволокно, по которому и доставляются вспышки света. На кончике зонда — крошечная мембрана микрофона. Система включает сразу два лазера: импульсы первого доходят до конца зонда, проходят сквозь мембрану и возбуждают биомаркеры, заставляя их генерировать акустические волны. Ультразвук вызывает колебания мембраны, которые считываются другим лазером.

«Как микрофон, только вместо электричества — свет, — рассказывает первый автор работы, Никита Кайданов из Сколтеха. — В качестве мембраны микрофона мы использовали 100-нанометровую плёнку из углеродных нанотрубок. А чтобы можно было считать с неё сигнал лазером, на мембрану напылено брэгговское зеркало из диоксидов титана и кремния. В итоге мы можем зарегистрировать, как колеблющееся вместе с мембраной зеркало модулирует сигнал лазера».

Ещё одно привнесённое коллективом из Сколтеха новшество — использование микроструктурированного волокна с полой сердцевиной, предоставленного промышленным партнёром Сколтеха, ООО НПП. То есть по центру зонда, по всей его длине, имеется полость, которая меняет оптические характеристики прибора. В частности, становится возможным проводить свет в среднем инфракрасном диапазоне. Он подходит для визуализации дополнительных биомаркеров: углеводов, липидов и белков, в том числе тех, которые нужны для выявления наиболее опасных, нестабильных атеросклеротических бляшек в сосудах.

Таким образом, опубликованное в ноябре в ACS Photonics исследование приближает момент создания рабочего оптоакустического эндоскопа. В числе прочего работа показывает эффект от нагрева зеркала лазером на показатель преломления. Эта информация нужна для корректной интерпретации сигнала. «В более широком смысле наш эксперимент продемонстрировал как таковую возможность считывания сигнала лазером с оснащённой зеркалом мембраны, — говорит Горин. — Однако в нашем случае мембрана колебалась не приходящим извне ультразвуком, а теряющим на ней часть энергии лазером».

По словам учёных, теперь, когда они убедились, что колебания успешно считываются, и измерили «фоновый» сигнал системы из-за возбуждения мембраны лазером, стал возможным следующий шаг — попытаться принять реальный ультразвуковой сигнал от биомаркеров в образце и доказать таким образом, что устройство работает.

Данная работа стала результатом сотрудничества трёх научных коллективов из Сколтеха: группы биофотоники, Лаборатории гибридной фотоники и Лаборатории наноматериалов, а также российских и зарубежных академических и индустриальных партнёров: Института биологической и медицинской визуализации Мюнхенского центра имени Гельмгольца, Тель-Авивского университета, Института спектроскопии РАН, МИФИ и ООО «Наноструктурная технология стекла».