Защищённые алюминием сенсоры предскажут аварию в нефтехранилище и дистилляционной башне
subscription

«И когда происходит поломка, вся работа останавливается, в башне в буквальном смысле выпиливают окошко, запускают туда мужика со шваброй, и он всё моет, чистит, смотрит на глаз и выходит — без инноваций …» — учёные предложили оснастить ректификационную колонну (перерабатывает нефть) оптическими сенсорами изнутри. Источник: Павел Одинёв/Сколтех

Исследователи из Сколтеха и Харбинского института технологий разработали систему оптических сенсоров с алюминиевым покрытием для мониторинга состояния промышленных конструкций. В частности, сенсоры способны выдержать агрессивную среду дистилляционной башни — сооружения, в котором нефть разделяется на фракции: бензин, керосин и т. д. Непрерывно собирая информацию о состоянии объекта, система поможет предотвратить аварию и вовремя выполнить точечную починку вместо масштабных работ по ремонту и очистке всей башни. Российско-китайское исследование проведено по линии научного сотрудничества БРИКС и опубликовано в журнале Optics Letters.


«Мы подходим к той стадии развития информационного общества, когда любой утюг или, скажем, газопровод будет непрерывно сообщать окружающему миру, как он себя чувствует и что делает. Кому-то эта информация будет нужна, кому-то нет, но она будет, и один из перспективных вариантов её использования — мониторинг целостности конструкций. Мы будем отслеживать в реальном времени износ крыла самолёта, пролёта моста и т. д., предсказывать поломки и чинить конструкцию точечно и заранее, а значит, экономить время и ресурсы — это принципиально другой подход к ремонту», — рассказывает один из авторов исследования, доцент Центра фотоники и фотонных технологий Сколтеха Аркадий Шипулин.


Для реализации такого высокотехнологичного подхода к обслуживанию сооружений и транспорта во все эти конструкции нужно внедрять массу датчиков. В том числе могут использоваться оптические сенсоры, разработкой и связыванием которых в систему занимались авторы статьи в Optics Letters, чтобы решить одну из проблем нефтеперерабатывающей промышленности.


Именно оптические сенсоры лучше всего подходят для систем охраны периметра и для мониторинга протяжённых инфраструктурных объектов, таких как ЛЭП и газопроводы, а также сооружений для хранения и переработки нефти — электроника там неприменима из-за опасности возгорания и взрыва. Оснащённое сенсорной системой, нефтехранилище само заранее «почувствует» начавшееся разрушение и поднимет тревогу, чтобы предотвратить аварию вроде масштабного разлива дизельного топлива в Норильске в 2020 году. Обслуживание станет эффективнее, потому что будет известно, что конкретно сломалось (или вот-вот сломается) на объекте.


«К нам обратилась одна компания, чтобы мы разработали сенсорную систему для мониторинга состояния ректификационной колонны — это такая башня, в которой нефть разделяется на ценные фракции. Грубо говоря, сверху заливают нефть, внизу вытекает бензин, керосин, дизель… И так оно работает. Пока не перестанет. Но никто не знает, что и где там внутри на данный момент стало засоряться или деформироваться — большой чёрный ящик. И когда происходит поломка, вся работа останавливается, в башне в буквальном смысле выпиливают окошко, запускают туда мужика со шваброй, и он всё моет, чистит, смотрит на глаз и выходит — без инноваций», — объясняет Шипулин.


Сенсоры в ректификационную колонну никто прежде не ставил, потому что условия внутри весьма суровые. Группе Шипулина и китайским коллегам удалось разработать концепт оптической сенсорной системы, которая не только способна собирать необходимую информацию, но и будет устойчива к высоким температурам и агрессивной химии. Исследователям нужно было разрешить дилемму: сенсор должен быть в достаточной степени ограждён от внешнего воздействия среды, чтобы не разрушиться, и при этом достаточно открыт, чтобы улавливать изменения в этой среде.


«Выходит противоречие: каким материалом покрыть стекловолокно, чтобы его защитить, но не отгородить напрочь от влияния снаружи? — продолжает Шипулин. — Металлические покрытия используются давно, но в первую очередь для того, чтобы как раз исключить внешние воздействия на волновод, который в этом случае играет роль изолированного канала передачи данных. Как только речь заходит именно о сенсоре, нужен материал с похожим импедансом».


Импеданс некоторого материала — это величина, которая характеризует, как в нём распространяются в данном случае акустические волны. Исследователи рассмотрели, как различия между импедансами стекловолокна и металлического покрытия влияют на то, в какой мере падающие акустические волны отражаются сенсором обратно во внешнюю среду и, соответственно, ускользают от него. В итоге коллективу удалось подобрать материал, с которым можно максимально приблизиться к импедансу стекла с разумной стоимостью покрытия, и этим материалом оказался алюминий.


Таким образом, одна из проблем — защита, но не изоляция оптоволокна от окружающей среды — была в первом приближении решена. Тем не менее, для создания полноценной системы мониторинга с предиктивными возможностями необходимо не только ещё решить ряд подобных частных задач, но и протестировать в лабораторных условиях работу всей системы целиком. Эта работа планируется как в рамках подобных двусторонних контактов (Россия — Китай), так и в рамках приобретающего всё более важную роль сотрудничества в рамках стран БРИКС.


“Information society is approaching a point where every household appliance and industrial facility will be sending out round-the-clock reports on what it is doing and how it is ‘feeling.’ You might not necessarily always need this information, but it will be out there, and one of the promising ways of using it is structural health monitoring. That is, tracking the internal state of the constituent parts of bridges, pipelines, aircraft, and so on to pinpoint anticipated failures and enable targeted interventions, saving much resources and minimizing downtime. It’s a whole new take on repairing stuff,” study co-author and Skoltech Associate Professor Arkady Shipulin from the Institute’s Photonics Center commented.


This highly effective approach to maintenance relies on sophisticated sensor systems embedded into structures and vehicles. Optical sensors, in particular, are the focus of the Skoltech-Harbin study, which attempts to address a challenge faced by the oil industry.


In general, optical sensors are the technology of choice for perimeter control, monitoring long-distance infrastructure, such as power lines or, say, undersea gas pipelines, as well as for the facilities used in oil refining and storage, where electronics are inapplicable due to combustion and explosion hazards. These include distillation columns — large towers for separating petroleum into its useful components, called fractions — and oil tank reservoirs, such as the one whose failure led to the 2020 diesel spill near Norilsk, Russia.


“We were approached by a company that wanted us to develop a sensor system that would report what’s going on in a distillation tower. You see, it’s like a big black box that keeps working fine, until it doesn’t. And then you have to literally cut the metal open and deploy a guy with a mop inside, who takes a look around, cleans up the whole thing, and hopefully everything works again — not much of a high-tech solution, really,” Shipulin said.


No one has ever put sensors inside a distillation tower, because of how harsh that environment is. Together with his Chinese colleagues, Shipulin’s team developed a concept for an optical sensor system that is not merely capable of collecting the necessary data but would actually survive the tower’s hot temperatures and aggressive chemicals. The crux of the problem is that the optical fiber has to be both shielded from the environment for protection and sufficiently exposed to it for sensing.


“It’s a bit of a contradiction, you see,” Shipulin said. “What material do you coat the glass fiber with to protect it without entirely walling it off from the acoustic waves outside? Metal coatings have been used for a long time, but mostly where the optical fiber serves as a transmission channel sealed off from the environment to prevent deterioration. Once it has to function as a sensor, impedance matching is key.”


The impedance of a material characterizes how acoustic (in this case) waves propagate in it. The researchers considered how a mismatch between the impedances of glass and the metal coating affects to what extent incoming acoustic waves are reflected back into the environment and thus are not “felt” by the sensor. The team then sought out a material whose impedance matches that of glass as closely as possible without driving the cost of the coating through the roof: aluminum.


Now that the problem of how to protect but not isolate the optical fiber from the environment has been tentatively resolved, the researchers can move on to a few similarly specific tasks before testing the entire sensing system as a whole in the lab. This work is planned both in the form of bilateral contacts, as in this Russian-Chinese study, and within the framework of a broader BRICS-based collaboration, whose importance is currently increasing.